Lea Beneish, University of North Texas
Authors: Lea Beneish and Christopher Keyes
2023 AWM Research Symposium
Recent Advances in Curves and Abelian Varieties [Organized by Renee Bell, Padmavathi Srinivasan, and Isabel Vogt]

We investigate the proportion of superelliptic curves that have a $\mathbb{Q}_p$ point for every place $p$ of $\mathbb{Q}$. We show that this proportion is positive and given by the product of local densities, we provide lower bounds for this proportion in general, and for superelliptic curves of the form $y^3 = f(x,z)$ for an integral binary form $f$ of degree 6, we determine this proportion to be 96.94$\%$. More precisely, we give the local density as an explicit rational function in $p$. This is joint work with Christopher Keyes.

Back to Search Research Symposium Abstracts